AIR P ROTEIN AND IT S DERIVATIVE FOOD A n evolutionary and sustainable future food.

  • Yash Jagdale MIT College of Food Technology, Pune, India
  • Viren Khot MIT College of Food Technology, Pune, India
Keywords: Air protein, Evolutionary, Renewable sources, Probiotic process


Ever growing populations and utilization of vast areas of land, consumption of enormous natural resources for food production are leading to serious natural disasters and calamities. The approach towards new sustainable and efficient ideas is important in terms of conservation and maintenance of the ecosystem. ‘Air protein’ is an evolutionary technology involving utilization of limited natural resources, renewable sources (air, water, and solar energy), and probiotic process to produce ‘Air-based meat’ which properties resemble original meat and other food derivatives.


Download data is not yet available.


1. Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science (New York, N.Y.), 327(5967), 812–818.
2. Coles, G. D., Wratten, S. D., & Porter, J. R. (2016). Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production. PeerJ, 4, e2100.
3. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264.
4. Food and Agriculture Organization of the United Nations,. (2017). The future of food and agriculture: Trends and challenges.
5. Smith P, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, et al. (2014). Chapter 11 - Agriculture, forestry and other land use (AFOLU). In: Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5. Cambridge University Press.
6. Semba R. D. (2016). The Rise and Fall of Protein Malnutrition in Global Health. Annals of nutrition & metabolism, 69(2), 79–88.
7. Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., Ramirez-Villegas, J., Rosenstock, T., Sebastian, L., Thornton, P. K., & Wollenberg, E. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34–43.
8. Litchfield, J. H. (1983). Single-Cell Proteins. Science, 219(4585), 740 LP – 746.
9. Matassa, S., Boon, N., Pikaar, I., & Verstraete, W. (2016). Microbial protein: future sustainable food supply route with low environmental footprint. Microbial biotechnology, 9(5), 568–575.
10. Havlík, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M. C., Mosnier, A., Thornton, P. K., Böttcher, H., Conant, R. T., Frank, S., Fritz, S., Fuss, S., Kraxner, F., & Notenbaert, A. (2014). Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 111(10), 3709–3714.
11. Le Cotty, T., & Dorin, B. (2012). A global foresight on food crop needs for livestock. Animal : an international journal of animal bioscience, 6(9), 1528–1536.
12. Taghdir, M., Mazloomi, S. M., Honar, N., Sepandi, M., Ashourpour, M., & Salehi, M. (2016). Effect of soy flour on nutritional, physicochemical, and sensory characteristics of gluten-free bread. Food science & nutrition, 5(3), 439–445.
13. AIR PROTEIN. Retrieved from
14. Girish M., Abirami S., Mahalakshmi V., 2018: Exploring the Nutritional Values of Hydrogenotrophic Bacteria as Space Food. IJSDR, Volume 3, Issue 12, 73-76.
15. Hannah Ritchie and Max Roser (2017) - "Meat and Dairy Production". Published
online at Retrieved from: ''.
16. Campbell, B. M., D. J. Beare, E. M. Bennett, J. M. Hall-Spencer, J. S. I. Ingram, F. Jaramillo, R. Ortiz, N. Ramankutty, J. A. Sayer, and D. Shindell. 2017. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society 22(4):8.
17. Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145–163.
18. J., F., Narrod, C., Rosegrant, M. W., Fernandez, M., Sinha, A., Alder, J., Ahammad, H., De Fraiture, C., Eickhout, B., Fonseca, J., Huang, J., Koyama, O., Omezzine, A. M., Pingali, P., Ramirez, R., Ringler, C., Robinson, S., Thornton, P., Van Vuuren, D., … Ulgiati, S. (2009). Looking into the future for agriculture and AKST. International Assessment of Agricultural Knowledge, Science, and Technology (IAASTD).
19. Alexander, P., Rounsevell, M. D. A., Dislich, C., Dodson, J. R., Engström, K., & Moran, D. (2015). Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Global Environmental Change, 35, 138–147.
20. Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853–2867.
21. Graham, R. (2019, November 13). FORGET PLANT-BASED MEAT, YOU COULD BE SERVED AIR-BASED MEAT FOR DINNER. Retrieved from
22. Greathouse, John. “Here’s How Lisa Dyson’s Startup Is Reducing World Hunger AND Combating Climate Change”. (2020, March 10). Retrieved from
23. Peters, A. (2019, November 11). The Newest Fake Meat Is Made from Thin Air.
Retrieved from
24. Food from Thin Air? Alumni Startup Transforms Carbon into Protein. (2020, March 4). Retrieved from
AIR P ROTEIN AND IT S DERIVATIVE FOOD A n evolutionary and sustainable e future food.
How to Cite
Jagdale Y, Khot V. AIR P ROTEIN AND IT S DERIVATIVE FOOD A n evolutionary and sustainable future food. FASJ [Internet]. 2020May31 [cited 2021Nov.27];1(01):38-2. Available from:
Review Articles